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Significance

Charting how the brain develops 
is key to understanding abnormal 
brain changes in common 
psychiatric and neurological 
disorders. Pooling brain scans 
from large cohorts of individuals 
at a specific point in time—i.e., 
cross-sectionally—has allowed 
researchers to indirectly infer 
dynamic brain changes across 
the human lifespan. However, it 
is unknown whether this 
inference is accurate—do brain 
growth charts estimated from 
cross-sectional snapshots 
accurately mirror true brain 
changes observed in the same 
individuals scanned at multiple 
timepoints? Here, we 
demonstrate that brain charts 
inferred from cross-sectional 
data underestimate brain 
changes directly observed in 
longitudinal data. As we 
endeavor to accurately map 
human brain development, we 
must also incorporate 
longitudinal measurements of 
the brain.
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Brain scans acquired across large, age-diverse cohorts have facilitated recent progress 
in establishing normative brain aging charts. Here, we ask the critical question of 
whether cross-sectional estimates of age-related brain trajectories resemble those 
directly measured from longitudinal data. We show that age-related brain changes 
inferred from cross-sectionally mapped brain charts can substantially underestimate 
actual changes measured longitudinally. We further find that brain aging trajectories 
vary markedly between individuals and are difficult to predict with population-level 
age trends estimated cross-sectionally. Prediction errors relate modestly to neuroim-
aging confounds and lifestyle factors. Our findings provide explicit evidence for the 
importance of longitudinal measurements in ascertaining brain development and 
aging trajectories.

normative models | cross-sectional | longitudinal | individual prediction | brain trajectory

Understanding brain aging is a fundamental challenge in neuroscience. An increased 
willingness to share neuroimaging datasets and the fruition of large-scale biobank initiatives 
have facilitated recent mapping of the world’s first normative brain reference charts span-
ning the entire human lifespan (1). Due to the time and cost of acquiring prospective 
data, brain aging trajectories are typically inferred from cross-sectional analyses, adopting 
age as a proxy for time—i.e., pseudolongitudinal designs. While cross-sectional designs 
afford well-powered and age-diverse insights, resulting estimates of age-related change 
may differ from observed longitudinal change (2).

Brain charts have informed the temporal patterning of macroscale brain aging, which 
broadly coincides with the timing of microcircuit development and decay. For example, 
volumetric gray matter reductions in the aging brain coincide with synaptic atrophy and 
dendritic regression (1). However, longitudinal brain phenotype trajectories—mapped 
from the same individuals at multiple timepoints—have revealed discrepant age-related 
trends, both in terms of regional development and in estimates of peak maturation  
(3, 4). These discrepancies may cast doubt on the validity of cross-sectionally derived 
age-related trends and undermine their potential for characterizing deviation patterns in 
clinical populations (5–7), subtyping (8), and biological classification (6, 9). Direct 
comparison in the same individuals may help to clarify whether cross-sectional estimates 
of age-related brain trajectories resemble those directly measured from longitudinal data.

Another major challenge presented by cross-sectional normative models is distinguishing 
age-related variability from nonage-related determinants of change. Different constellations 
of characteristics attributable to individuals, such as neuroimaging confounds, interscan 
interval, and lifestyle factors are known sources of nonage-related variability (10–13). 
Such variability may explain why person-specific rates of change in common MRI measures 
(e.g., cortical volume and thickness) ascertained directly from longitudinal measurements 
can often depart from group-level age-related brain trends—e.g., upward instead of down-
ward slopes in gray matter volume (GMV) with advancing age (14). In turn, individualized 
brain trajectories may not mirror group-level trends. High technical/noise and/or biological 
variability ultimately pose challenges to clinical applications of brain age charts for 
individual-level prediction (15, 16), such as to predict atrophy rates in neurology cohorts 
or to understand deviant brain development and decline.

This investigation was motivated by the recent developments in mapping human brain 
charts (1, 17–20) and aimed to build on existing efforts to reconcile individual trajectories 
of brain change with cross-sectional-level inference (4). Here, we critically examine brain 
aging trajectories inferred from normative models of multimodal cross-sectional MRI 
data. Utilizing two independent datasets, reflecting aging and developmental cohorts, 
respectively, we test whether cross-sectionally inferred age-related trends recapitulate tra-
jectories derived from longitudinal data and whether individual trajectories can be pre-
dicted using group-level rates of change inferred from cross-sectional normative models. 
This knowledge can inform future efforts to establish lifespan brain reference charts (1) 
and normative models of brain function (6).
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Results

We first asked whether age-related rates of change apparent in nor-
mative brain aging charts accurately reflect rates of change measured 
longitudinally. To this end, brain MRI data were utilized from two 
cohorts (SI Appendix,Table S1): i) an aging cohort (age range = 47 
to 80 y at baseline) comprising UK Biobank (UKB) (21) individ-
uals with baseline and follow-up MRI data (N ranges from 2,752 
to 2,832 with 48 to 49% females across the phenotypes), and ii) a 
developmental cohort (age range = 9 to 11 y at baseline) comprising 
Adolescent Brain Cognitive Development (ABCD) (22) individuals 
(N ranges from 6,537 to 7,480 with 54% females across the phe-
notypes) with available baseline and follow-up MRI. Results per-
taining to the ABCD cohort are presented in the SI Appendix, Fig. 1 
presents a methodological overview.

Normative Models. Generalized Additive Models for Location, 
Scale and Shape (GAMLSS) frameworks (23) (stratified by sex 
and site) were used to establish normative reference ranges as a 
function of age for i) whole-brain cross-sectional GMV, cortical 
thickness (CTh), surface area (SA), and fractional anisotropy (FA) 
at baseline (Fig. 2A) and ii) annualized rates of change, estimated 
longitudinally (follow-up minus baseline divided by the interscan 
interval), for each of these four phenotypes (Fig. 2B, blue curves). 
Numerical differentiation (i.e., first derivative) of the fitted 
normative curves in Fig. 2A yielded cross-sectional group-level 
estimates of rates of change (Fig. 2B, red curves). This enabled 
the comparison of cross-sectionally inferred and longitudinally 
measured rates of change.

Cross-Sectional Data Underestimate Age-Related Brain Changes. 
We found that median rates of age-related change were significantly 
lower for cross-sectional compared to longitudinal estimates 
across all four phenotypes: GMV [t = 19.23, PFDR < 0.05, false 
discovery rate (FDR) corrected across four phenotypes, Cohen’s 
d = 0.43]; CTh [t = 31.80, PFDR < 0.05, Cohen’s d = 0.71], SA [t = 
40.20, PFDR < 0.05, Cohen’s d = 0.90], and FA [t = 19.89, PFDR < 
0.05, Cohen’s d = 0.45]. Brain aging inferred from cross-sectional 
data (i.e., pseudo-longitudinal experimental designs) thus 
markedly underestimated age-related trends. Underestimation 
was most pronounced for CTh, with underestimation of up to 
44% (at 60 y of age), followed by SA (37% underestimation 
at 72 y), FA (35% underestimation at 73 y), and GMV (26% 
underestimation at 73 y).

Underestimation was evident regardless of the timepoint (base-
line or follow-up) used to construct cross-sectional normative 
models (SI Appendix, Fig. S1) and was more pronounced for 
centiles other than the median (see SI Appendix, Fig. S2 for 2%, 
16%, 84%, and 98% centiles). Region-level analyses determined 
that underestimation was spatially diffuse, and overestimation 
was evident for a small fraction (<20%) of regions, including the 
SA of the right central sulcus and the middle-posterior segment 
of the right cingulate gyrus and sulcus, as well as CTh of the left 
calcarine sulcus (SI Appendix, Fig. S3). Furthermore, a supple-
mentary analysis was conducted to determine whether 
cross-sectional underestimation occurs when estimating longi-
tudinal rates of change, rather than directly modeling rates of 
change from longitudinal measurements. To this end, linear 
mixed effects (LME) models were fitted to infer rates of change 
using the longitudinal MRI measures while controlling for 
repeated measurements. LME-derived rates of change were com-
pared to cross-sectional rates of change, as estimated from general 
linear models. This comparison recapitulated the underestima-
tion by cross-sectional data (SI Appendix, Fig. S4), confirming 

that underestimation by cross-sectional is evident regardless of 
directly or indirectly (LME) deriving rates of change from lon-
gitudinal measurements. Lastly and perhaps most critically, 
underestimation of age-related change was replicated in the 
developmental (ABCD) cohort, revealing a maximal percent 
difference of 99% (SI Appendix). Our finding underscores the 
importance of calibrating brain reference charts with longitudinal 
data to improve accuracy in normative brain trajectories and to 
facilitate inference at an individual level.

Fig.  1. Study design. (A) GAMLSS frameworks established normative 
reference ranges of variation in cross-sectional baseline MRI measures (GMV, 
CTh, SA, and FA). (B) Numerical differentiation of the fitted cross-sectionally 
derived normative curves yielded group-level rates of change in MRI measures 
(red line), which were compared to rates of change directly ascertained from 
longitudinal measurements (blue line). Group-level estimates of rates of 
change were used to predict individual phenotype measurements at follow-
up in unseen subjects. Specifically, individual trajectories were predicted from 
i) naive models assuming no change over time (i.e., equivalent baseline and 
follow-up values); ii) rates of change derived from cross-sectional data (50-th 
percentile); and rates of change derived from cross-sectional data using each 
individual’s percentile at baseline (SI Appendix, Fig. S5). (C) Errors in predicting 
individualized brain trajectories (i.e., mean absolute errors) were examined for 
(D) associations with demographic characteristics, neuroimaging confounds, 
and lifestyle variables across four domains: alcohol consumption, physical 
activity, sleep, and tobacco smoking. Abbreviations: gray matter volume (GMV); 
cortical thickness (CTh); surface area (SA); fractional anisotropy (FA); Cross 
(cross-sectional).
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Cross-Sectional Normative Models Minimally Aid Individualized 
Prediction. We next asked whether individual trajectories can 
be predicted using group-level rates of change inferred from 
cross-sectional normative models. To this end, we predicted 
follow-up brain phenotype measurements for unseen individuals 
using cross-sectionally inferred rates of change. An individual’s 
follow-up brain phenotype measurement was predicted such that 

ŷ1 = y0 + ∫ age1age0
Δq(x)dx , where y0 is the baseline measurement and 

Δq(x) denotes normative rate of change at age x years for the q th 
percentile. Fig. 3A shows the predicted (red lines) and empirically 
measured (gray lines) age-related trajectories for all individuals and 
brain phenotypes. Predictions were formed using: i) the median 
centile (q = 0.5) for all individuals (Fig. 3 A and B) or ii) the 
individual’s specific centile at baseline (SI Appendix, Fig. S5).

We found that the empirically measured variation of individual 
change was substantially (6 to 27 times) greater than our predictions 
(Fig. 3A). Approximately one-third of all individuals departed from 
the predicted downward direction of change in the aging cohort—
the percentage of individuals with upward slopes was 34% for GMV, 
42% for CTh, 21% for SA and 39% for FA. All model-based pre-
dictions outperformed naive prediction where follow-up measure-
ments were predicted to be equal to baseline measurements (i.e., to 
test the null hypothesis that phenotypes remain fixed over time). 
Specifically, significant differences were observed in mean absolute 
errors (MAEs) between cross-sectional and naive predictions 
(Fig. 3B). Despite these significant effects, the percent reduction in 
prediction errors was 18% for SA, 7% for GMV, 4% for FA, and 
2% for CTh, demonstrating that group models of MRI measures 
generated from cross-sectional data offer minimal improvement to 
predictions of individual change relative to naive models of no 
change. The performance of individualized prediction from 
cross-sectional rates of change did not significantly differ to an alter-
native null hypothesis constructed by randomizing subject age (±5 y) 
while preserving interscan interval (1,000 permutations). Specifically, 
there was no significant difference in MAEs between predictions 
based on age-correct cross-sectional rates of change and predictions 
based on age-shuffled cross-sectional rates of change (P > 0.05 across 
all phenotypes). Thus, we conclude that while normative models 
capture shared age variance, person-specific factors may outweigh 
the influence of age in determining individual rates of change.

Nonage-Related Factors Contribute to Errors in Predicting 
Individualized Change. Demographic, neuroimaging, develop-
mental, and lifestyle factors are known sources of nonage-related 
variability (10–13). MAEs in predicting individualized change 
were significantly higher in males relative to females and across 
all models examined for GMV and SA but not for CTh and FA 
(SI Appendix, Fig. S6). In contrast, no difference in MAE was found 
between individuals of and not of European ancestry or between 
individuals with and without a medical/psychiatric/neurologic 
diagnosis (SI Appendix, Fig. S6). Fig. 4A shows associations between 
MAE with neuroimaging-related factors, including MRI-related 
confounds [three principal component analysis (PCA)-derived 
components as specified in SI  Appendix, Fig.  S7 and Table  S2], 
the direction of observed change from baseline to follow-up, and 
interscan time interval. Poorer prediction accuracy was significantly 
associated with neuroimaging confounds (Fig. 4A), upward (rather 
than downward) slopes in the direction of change, and longer 
interscan intervals for T1 measures (refer to SI Appendix, Fig. S8 
for correlation plots). The percentage of error variance explained 
by any one neuroimaging variable was small (<1%), implying 
additional determinants of individual variability in age-related 
change estimates. We thus examined a range of potential lifestyle-
related sources underlying nonage-related variability, including 
features of alcohol consumption, physical activity, sleep, and tobacco 
smoking. As shown in Fig. 4B, prediction errors from individualized 
estimates of age-related change in GMV and SA were significantly 
and positively correlated to alcohol intake frequency and partial fiber 
scores, indicating that greater frequency of alcohol consumption 
and lower dietary intake of fiber aid the prediction of individualized 
age-related GMV trajectories. Lifestyle correlations were consistent 
between cross-sectional models based on the 50-th percentile (mean) 
and individualized percentiles at baseline (indv %).

Discussion

In the age of precision medicine, the goal of neuroimaging in psy-
chiatry and neurology extends beyond static and group-level 

Fig.  2. Normative models of brain aging. Normative centile reference 
ranges for (A) cross-sectionally measured whole-brain GMV, CTh, SA, and 
FA and (B) rates of change for each phenotype, shown alongside 25% and 
75% CIs (dashed lines), generated with bootstrapping (500 samples). Rates of 
change were estimated i) directly from longitudinally measured phenotypes 
(blue) and ii) by differentiating the median centile curves (red). Insets show 
the percentage difference between cross-sectional and longitudinal rates of 
change. Abbreviations: gray matter volume (GMV); cortical thickness (CTh); 
surface area (SA); fractional anisotropy (FA); diff (difference).
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inference to include dynamic predictions of individualized change 
(16). We examined whether current MRI data and methodological 
approaches can realize such ambitions. Utilizing state-of-the-art 
developmental and aging datasets, we show that cross-sectional 
aging models underestimate longitudinal measurements of change 
in standard MRI brain measures. This divergence between intra- 
and inter-person trajectory estimates varies with age and specific 
brain measures. We also show that group-level trends offer signifi-
cant, albeit minor, improvements to naive predictions of individ-
ualized change based only on an individual’s brain measurement 
at baseline.

Fundamental knowledge of macroscale brain development and 
aging relies on accurate age trends. Our findings cohere with pre-
liminary evidence that cross-sectional age trends underestimate 
longitudinal changes across 5 years in regional volumetric meas-
ures (4). Here, we extend this conclusion to multiple brain modal-
ities and age-diverse populations, using timely normative models 
and large-scale biobank resources. An implication of these findings 
is that imprecise estimates provide shaky foundations for predic-
tion (e.g., critical periods of growth/decline, disease outcomes, 
neurodegenerative decline, etc) and downstream hypotheses 
regarding the biology and impacts of aging (24, 25). For example, 
cross-sectionally inferred trajectories of SA (Fig. 2B) are relatively 
stable compared to longitudinal estimates that highlight increasing 
rates of change with advancing age. Based on the cross-sectional 
normative model, researchers may wrongly conclude that SA is 
preserved in the aging process or that other variables, such as those 
related to cognition, decline independently of SA. In terms of 

applying normative models to monitor individualized trajectories, 
an individual may be wrongly referred for follow-up clinical inves-
tigation because their brain has been assessed as exhibiting rapid 
decline relative to established norms.

The critical issue with respect to the interpretation of age trends 
is whether time-related effects on the brain varied as a function 
of age. Time and age effects are inextricably intertwined, particu-
larly in age-diverse cohorts where brains may harbor signatures of 
time due to, for example, major historical events or medical treat-
ments available at a given time. We found less pronounced 
age-related change in estimates derived from cross-sectional data 
when compared to longitudinal data, across all brain measures 
examined. This effect was spatially diffuse at a regional level, such 
that only a small number of regions did not significantly differ 
from or overestimated longitudinal age trends. As such, 
time-related effects associated with the period of measurement (or 
measurement errors) generally outweighed variability ascribed to 
age. Critically, underestimation of age-related change by 
cross-sectional normative models in both an age-diverse (UKB 
age range = 47 to 80 y) and age-constrained (ABCD age range = 
9 to 11 y) cohort, indicating that factors beyond cohort/genera-
tional effects likely contribute to the time-related impacts observed 
in longitudinal rates of age-related change. Age-related effects as 
observed naturally across time are nuanced by individual aspects 
related to the brain structure.

Our findings indicate that normative models of MRI measures 
generated from cross-sectional data offer only minimal improve-
ment to predictions of individual change relative to naive models 

Fig. 3. Predicting individualized trajectories from group-level cross-sectional trends. (A) Observed change from baseline to follow-up (X axis) and predicted rate 
of change, as estimated from cross-sectional (cross) baseline data (using the 50-th for all individuals). (B) Mean absolute error in predicting the rate of change 
with cross-sectional models based on the 50-th percentile (mean) and individualized percentiles at baseline (indv %) and naive models (i.e., follow-up phenotype 
values are equal to baseline phenotype values). Bars denote between-group comparisons and asterisks denote significance (PFDR < 0.01). Predictions derived 
from median centiles and individual-specific centiles yielded comparable accuracy for all phenotypes (no significant differences, P > 0.05). Abbreviations: gray 
matter volume (GMV); cortical thickness (CTh); surface area (SA); fractional anisotropy (FA); Cross (cross-sectional).
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of no change. This finding may be unsurprising given that many 
individuals displayed trajectories that opposed group-level trends, 
consistent with previous studies. For example, in contrast to an 
expected age-related decline in CTh with advancing age, longitu-
dinal studies have reported increases in CTh over time, which may 
relate to exercise (26), peripheral telomerase activity (27), and at 
a cellular level, to enhanced gliogenesis or proliferative capacity 
of critical support cells in the brain (27). Thus, while normative 
models capture shared age variance that accords with the cellular 
hallmarks of brain maturation and decline, person-specific factors 
outweigh the influence of age in determining individual rates of 
change. These findings should not be interpreted as diminishing 
the importance of cross-sectional studies. Cross-sectional data are 
critical for examining group differences, brain regional variability, 
and brain associations with individual factors. Instead, our find-
ings suggest that longitudinal data offer complementary charac-
terization of intraindividual variation to reveal nonage-related 
determinants of change.

Dynamic changes in MRI measures relate to numerous 
person-specific factors that in turn, impact prediction accuracy. 
We found that prediction errors in estimating individual rates 
of change reflected person-specific factors including noise related 
to MRI confounds and direction of observed change and inter-
scan interval, as well as key lifestyle determinants. Interestingly, 
prediction accuracies in individual age trajectory estimates of 
GMV and SA were aided by factors linked to poor health, 
including higher overall alcohol intake and lower dietary fiber 
intake. For example, intake of dietary fiber—nondigestible forms 
of carbohydrate that usually originate from plant-based 

foods—has been inversely associated with the risk of dementia 
(28), cognitive impairments (29), and total brain volume (30). 
Therefore, we speculate that factors accelerating typical 
age-related brain trends (i.e., exaggerated brain atrophy with 
advancing age) improves prediction accuracy by way of increas-
ing the likelihood that brain changes track along the same direc-
tion as normative brain age trends. In contrast, predictions were 
less accurate in individuals that depart from typical brain age 
trends. These findings call into question the ability of established 
reference norms—particularly in adolescence and adulthood—to 
accurately predict individualized patterns of change. Uncovering 
person-specific factors that improve prediction accuracies will 
likely aid the clinical utility of normative brain charts in psychi-
atry and neurology settings.

We note the following limitations. Brain trajectory estimates 
may be subject to selection bias, as the likelihood of participating 
in follow-up assessments is nonrandom. It is possible, for exam-
ple, that individuals participated in follow-up brain imaging due 
to a family history or personal/subjective concerns about cogni-
tive decline and neurodegeneration, manifesting in greater brain 
changes in this group relative to the wider population imaged at 
baseline (31). While we cannot determine these effects, our 
results that indicate underestimation by cross-sectional-indexed 
rates of change were replicated in an independent developmental 
cohort, where selective loss-to-follow-up was acceptably low 
(32). Another important consideration is that our longitudinal 
models still encompass a cross-sectional component, such that 
rates of change modeled as a function of age were not drawn 
from repeated MRI measurements evenly sampled across 30 y 
in the same individuals. Therefore, our longitudinal models 
remain subject to the pitfalls inherent to cross-sectional designs 
(e.g., generational effects), albeit to a lesser extent. Pure longi-
tudinal designs would undoubtedly derive more accurate esti-
mates of age-related change and potentially yield stronger 
correlations with various lifestyle, genetic, or neurobiological 
variables. Nonetheless, our findings suggest that even in the con-
text of longitudinal models biased by cross-sectional influence, 
cross-sectional underestimation of age-related change is pro-
nounced, particularly for ages marked by dynamic change, in 
both an aging and developmental cohort. This is due to 
person-specific factors that outweigh the common influence of 
biological age-related processes on MRI measures.

Major gaps remain in our knowledge around human brain 
aging trajectories, particularly as inferred from cross-sectional data. 
We outline three specific recommendations that follow from our 
findings, and that would benefit from further research:

1.   Much of what is known about trajectories of brain aging 
derives from cross-sectional investigations. Our results 
here suggest that cross-sectional models and brain charts 
can underestimate the extent of age-related brain changes. 
Caution is thus recommended when interpreting cross-sec-
tional estimates, and calibration/correction factors may be 
required. Prospective studies will be needed to enable calibra-
tion of cross-sectional models and to improve their accuracy 
for individual and prospective inference.

2.   Our work challenges the assumption that neuroimaging 
confounds constitute a substantial share of variance in errors 
from predicting individualized trajectories of brain change. 
Furthermore, a range of demographic, developmental, and life-
style factors, respectively contributed less than 2% of variance. 
Further exploration into types and sources of error in predicting 
longitudinal change from cross-sectional rates of change will 
enhance the practical utility of future normative models.

Fig.  4. Neuroimaging and lifestyle associations with errors in predicting 
individualized rates of change. (A) MAE variance explained (r2) by neuroimaging 
factors, including PCA-summarized neuroimaging confounds measured at 
baseline (derivation of PCA components are shown in SI Appendix, Fig. S7), 
direction of change (increasing/decreasing), and interscan time interval (B) 
Regression plots present significant correlations between lifestyle measures (Y 
axis) and normalized MAE (X axis) from cross-sectional predications of change, 
based on the 50-th percentile (X axis). Asterisks denote significance (PFDR < 
0.05). Abbreviations: Principal component analysis (PCA); mean absolute error 
(MAE); cross-sectional (cross); individual (indv).

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 1
42

.1
71

.1
86

.6
0 

on
 A

pr
il 

3,
 2

02
5 

fr
om

 I
P 

ad
dr

es
s 

14
2.

17
1.

18
6.

60
.

http://www.pnas.org/lookup/doi/10.1073/pnas.2216798120#supplementary-materials


6 of 7   https://doi.org/10.1073/pnas.2216798120 pnas.org

3.   A considerable portion of subjects were found to exhibit tra-
jectories of brain change that defy average age trends The 
potential influence of measurement error (resulting from 
sources unexamined here) and/or possible biological bases 
of these changes warrants further exploration to expand 
knowledge around lifelong neuroplasticity, as well as the 
determinants and benefits/detriments of contrary brain age 
trajectories.

Normative models provide new opportunities to harness neuro-
imaging in clinical settings, for example, by providing benchmarks 
against which individuals can be monitored for neurodegenerative 
disorders in vivo. However, individual-centric approaches present 
new challenges in terms of accuracy and reliability. Our findings 
demonstrate that normative models established on cross-sectional 
data underestimate group-level age trends and that group-level 
normative models are limited in terms of individualized inference. 
Before we can realize the ambitions of normative models, it is first 
prudent to address these barriers impeding their utility.

Materials and Methods

SI Appendix details sample characteristics, the derivation and treatment of study 
variables, age-related brain age models, and statistical testing. All data were 
drawn from the UKB and the ABCD. UKB approval was obtained from ethics 
committees as detailed in http://www.ukbiobank.ac.uk/ethics/. ABCD approval 
was obtained from a centralized institutional review board (IRB) within the 
University of California, San Diego and from local IRBs obtained from each 
study site. Written informed consent was obtained from each participant (and 
from parents in the ABCD).

Modeling Age-Related Change. Normative centile curves were fit to whole-
brain MRI estimates of GMV, CTh, SA, and FA using GAMLSS implemented in R 
v2021.09.1 (Build 372) (33, 34). The GAMLSS framework is a semiparametric 
normative modeling framework that accounts for heteroscedasticity, non-Gauss-
ian distributions, and nonlinear trajectories. For each phenotype, the GAMLSS 
model (SI Appendix) using a Box-Cox t distribution—a shifted and truncated ver-
sion of the t distribution (35)—was fitted separately to i) cross-sectional data and 
ii) longitudinally estimated rates of change (see SI Appendix, Fig. S9 for QQplots 
visualizing GAMLSS model fits). The cross-sectional rate of change was inferred 
by numerically differentiating the k-th percentile as a function of age for the 
GAMLSS curve. Expressed as a percentage, the cross-sectional rate of change at 
age = (agen + agen+1)∕2 was thus given by,

Δk
cross

(
age

)
=

−

y
k (
agen+1

)
−

−

y
k (
agen

)

agen+1 − agen
×

100%
−

y
k (
agen

)
,

where 
−

y
k (
agen

)
 is the k-th percentile at agen estimated from the GAMLSS fitted 

to the baseline data. The age range was uniformly sampled at a resolution of 
agen+1 − agen ≈ 2 wk (see SI Appendix, Fig. S10 for results across alternative 
sampling resolutions). Given that differentiation is a sharpening operation that 

can amplify noise, Δk
cross

 was smoothed as a function of age using a moving 
average filter with a span of approximately ±2.5 y.

Predicting Individual Phenotype Measurements at Follow-Up Using Rate 
of Change Estimates. The group-level cross-sectional ( Δk

cross
 ) estimates of rate of 

change were used to predict individual phenotype measurements at follow-up. 
For the i-th individual with baseline and follow-up phenotype measurements at 
agen and agen+1 , the follow-up phenotype measurement was predicted from the 
baseline measurement according to the integral,

ŷi
(
agen+1

)
= yi

(
agen

)
+

agen+1

∫
agen

Δk
cross

(x)dx.

The integral was evaluated using the trapezoidal rule with a spacing of approx-
imately 2 wk between successive estimates of rate of change. Predictions were 
computed using i) the 50-th percentile ( k = 50 ) for all individuals and ii) individ-
ualized percentiles determined by the individual’s percentile at baseline. In the 
above integral, estimated rates of change ( Δk

cross
 ) were expressed in absolute terms, 

not as percentages. Prediction accuracy was measured using the MAE, given by,

MAE =
1

N

N∑

i=1

AEi , AEi =
|
||
ŷi
(
agen+1

)
− yi

(
agen+1

)|
||
.

MAE was computed for cross-sectional predictions as well as a naive prediction 
where ŷi

(
agen+1

)
= yi

(
agen

)
 for all individuals i = 1, ⋯ ,N.

Data, Materials, and Software Availability . MRI data are available from the 
UKB Access Management System (https://www.fmrib.ox.ac.uk/ukbiobank) (36) and 
the ABCD data repository (https://data-archive.nimh.nih.gov/abcd) (37). Normative 
modeling was performed using GAMLSS frameworks, which is publicly available 
code in R v2021.09.1 (Build 372). All codes are available on GitHub: https://
github.com/mdibiase1/Predict_Rate_of_Change.git.
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